| Grand 120-cell | |
|---|---|
![]() Orthogonal projection  | |
| Type | Schläfli-Hess polytope | 
| Cells | 120 {5,3} | 
| Faces | 720 {5} | 
| Edges | 720 | 
| Vertices | 120 | 
| Vertex figure | {3,5/2} | 
| Schläfli symbol | {5,3,5/2} | 
| Coxeter-Dynkin diagram | |
| Symmetry group | H4, [3,3,5] | 
| Dual | Great stellated 120-cell | 
| Properties | Regular | 
In geometry, the grand 120-cell or grand polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,3,5/2}. It is one of 10 regular Schläfli-Hess polytopes.
It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It is named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids.
Related polytopes
It has the same edge arrangement as the 600-cell, icosahedral 120-cell and the same face arrangement as the great 120-cell.
| H4 | - | F4 | 
|---|---|---|
![]() [30]  | 
![]() [20]  | 
![]() [12]  | 
| H3 | A2 / B3 / D4 | A3 / B2 | 
![]() [10]  | 
![]() [6]  | 
![]() [4]  | 
See also
- List of regular polytopes
 - Convex regular 4-polytope
 - Kepler-Poinsot solids - regular star polyhedron
 - Star polygon - regular star polygons
 
References
- Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder .
 - H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
 - John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26, Regular Star-polytopes, pp. 404–408)
 - Klitzing, Richard. "4D uniform polytopes (polychora) o5o3o5/2x - gahi".
 
External links
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.






